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Sequential Metropolis Algorithms for Fluid Simulations

Ruichao Ren,1 C. J. O’Keeffe,1 and G. Orkoulas1,2

In this work, the implementation of our recently proposed sequential Metrop-
olis algorithm in the grand canonical ensemble, a case particularly relevant
for continuum fluids, is considered. By performing Monte Carlo simulations
for the two-dimensional lattice gas, it is shown that our algorithm converges
faster than all known grand canonical algorithms that satisfy strict detailed
balance. The main advantages of the new algorithm are its simplicity, gener-
ality, and the possibility of parallel implementation.
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1. INTRODUCTION

Molecular simulation techniques have been extensively used as alternatives
to analytical techniques in estimating fluid properties [1–3]. The pioneer-
ing work of Metropolis et al. [4] on the Monte Carlo method is based on
the theory of Markov processes and the so-called principle of “detailed
balance”. Random updating of particles (or spins for magnetic systems)
ensures that strict detailed balance (microscopic reversibility) is satisfied
at any time. While it is known that strict detailed balance is a sufficient
but not necessary condition for convergence to equilibrium [3,5], no sys-
tematic attempts have been made to investigate alternative possibilities of
improvement.

Recently, we proposed a Monte Carlo algorithm based on sequen-
tial updating moves with partial randomness [6]. The new algorithm
breaks the constraint of strict reversibility, and it only satisfies the
weaker “balance condition” [5,6]. Analytical results based on transition
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matrix theory indicate that the new algorithm converges faster than the
Metropolis algorithm with strict detailed balance. Monte Carlo simula-
tions for the two-dimensional Ising model show that the new algorithm
improves the sampling quality dramatically by reducing the autocorrela-
tion of samples. The enhancement was attributed to the nature of the
updating; for the ferromagnetic Ising model, the so-called “neighbor”
effect was identified as the main contributing factor of acceleration: suc-
cessful flip of a given spin triggers a much higher probability of flipping a
neighboring spin in the same direction as the precursor. Sequential updat-
ing takes advantage of this so-called “neighbor” effect and results in a
cascaded enhancement of sampling mobility which in turn improves the
statistical efficiency of sampling.

In this work, we consider the algorithm of Ref. [6] for the well-known
lattice gas in the grand canonical ensemble. This is done by exploring the
equivalence of the Ising model to the lattice gas. Although several grand-
canonical-type algorithms exist for continuum fluid models [7–10], there
is no universally accepted grand canonical algorithm capable of achieving
Ising-like precision for realistic molecular systems. As for the two-dimen-
sional nearest-neighbor lattice gas on the square lattice, we find that the
sequential algorithm is superior to the Metropolis-type of algorithm based
on random updates as well as standard algorithms used for continuum
fluid models [7–9]. The next attempt in the direction of sequential-type of
algorithms is generalization for continuum fluid models.

2. MARKOV PROCESS

Consider a stochastic process that involves transitions between differ-
ent states at discrete time intervals 0, δt,2δt, . . . , where δt is a time inter-
val associated with successive transitions. A Markov process is defined as
the process for which the transition probability from state i to state j ,
Pi j , only depends on the two states and not on previous history. In matrix
notation, P = {Pi j } denotes the transition matrix (kernel) of the Markov
process. Due to conservation of probability, each row of P sums to unity.
Thus, in matrix notation, we may say

P · 1=1 (1)

where 1 is the column vector {1,1, . . . ,1}. If the initial probability distri-
bution of states is g(0)={g1(0), g2(0), . . .}, then after one transition

gT (1)= gT (0) · P (2)
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where g = {g1, g2, . . .} stands for a column vector and gT (row vector) is
the transpose of g. The long-time limit of sequence Eq. (2) defines the sta-
tionary (equilibrium) distribution of states π ={π1, π2, . . .},

lim
n→∞ gT (n)= gT (0) · lim

n→∞ Pn =πT . (3)

If the previous limit exists, further iterations leave the probability distribu-
tion invariant, i.e.,

πT · P =πT . (4)

In order for the limit Eq. (3) to exist, the transition kernel P must
also have a well-defined limit. The limiting form may be found by decom-
posing P in terms of its eigenvalues and eigenvectors via standard similar-
ity transforms. Assuming that the Jordan canonical form of P is diagonal,
we may expand P in terms of matrices M ( j) containing its left and right
eigenvectors associated with eigenvalue λ j . Thus we have

P =λ1 M (1) +λ2 M (2) +· · · . (5)

In view of Eqs. (1) and (4), one sees that π and 1 are the left and right
eigenvectors associated with eigenvalue λ1 =1. In addition, |λ j |<1 for j =
2,3, . . . , otherwise, the matrix elements of Pn diverge as n →∞: see Eq.
(5). If λ1 =1 and |λ j |<1 for j ≥2, Eq. (5) yields

lim
n→∞ Pn = M (1), (6)

where the matrix elements of M (1) are

M (1)
mn =πn . (7)

In this case, the kernel P is called “primitive” [11]. The Perron-Frobe-
nius theorem [11] implies that, for a primitive stochastic matrix, λ1 = 1
and |λ j | < 1 for j ≥ 2. Thus, a primitive Markov chain always converges
to its unique stationary distribution. Convergence can also be proved for
the case for which the Jordan canonical form of P is not diagonal [5,12].

Primitivity is often confused with irreducibility. A transition matrix is
called “irreducible” if any state can be reached from any other state within
a finite number of steps [12]. Irreducibility alone does not guarantee the
convergence of a Markov chain in the case that every state leads back to
itself after a fixed number of steps (periodic chain). Whereas direct proof
of primitivity of a given transition matrix is difficult, it can be shown that
an irreducible and aperiodic matrix is always primitive [6]. Irreducible and
aperiodic Markov chains are also called ergodic [13], and they converge to
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a unique stationary limit if and only if the transition matrix P satisfies Eq.
(4), or equivalently, ∑

i

πi Pi j=π j , ∀ j. (8)

Equation (4) or (8) is commonly referred to as the balance condition [2,5].

3. METROPOLIS METHOD

The algorithm of Metropolis et al. [4] can be easily explained in the
canonical ensemble. The probability πi of state i is

πi = 1
Q

e−βEi (9)

with β = 1/(kBT ). kB is Boltzmann’s constant, T is the temperature, and
Ei is the energy of state i . The partition function that appears in Eq. (9)
as the normalization constant,

Q =
∑

j

e−βE j (10)

cannot be found in a closed, analytical form, expect in very few cases.
Metropolis et al. [4] devised a Markov process such that, after long times,
each state j appears with a probability proportional to its statistical-
mechanical weight π j . Given a state i , a new state j is generated by a
small perturbation (i.e., local particle move, spin flip). The transition prob-
ability Pi j from i to j is chosen to satisfy the so-called detailed balance
condition [2,3];

πi Pi j =π j Pji . (11)

Detailed balance is a sufficient but not necessary condition [3,5] for con-
vergence to equilibrium;

πi Pi j=π j Pji⇒
∑

i

πi Pi j=π j . (12)

The transition probability Pi j is defined through two additional probabili-
ties: the a priori or proposal probability qi j , and the acceptance probabil-
ity αi j ;

Pi j =qi j αi j , ∀ i �= j , (13)

Pii =1−
∑

i �= j

Pi j . (14)
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The acceptance probability αi j , from i to j , is defined as

αi j =min
{

1,
q ji

qi j

π j

πi

}
. (15)

The previous choice of αi j automatically satisfies the detailed balance con-
dition Eq. (11), for all i and j . A transition matrix that satisfies Eq.
(11) is also called a “reversible kernel” [14]. According to Peskun [14],
the Metropolis transition kernel is the optimal one within reversible ker-
nels in terms of statistical quality. The Metropolis choice of αi j , Eq. (15),
avoids prior knowledge of the normalization Q, Eq. (4). Since each state
j appears with frequency proportional to π j , an estimate for the ensemble
average 〈X〉 of a fluctuating quantity X is given by the simple arithmetic
average

X = 1
M

M∑

m=1

Xm (16)

over M successive configurations.

4. RANDOM AND SEQUENTIAL METROPOLIS ALGORITHMS

In the standard implementation of the Metropolis algorithm, a new
state j is generated from a current one i , by a perturbation in a randomly
selected component. By component, we mean a particle for the case of
fluid systems and a spin for the case of magnetic systems. A perturba-
tion comprises a local displacement for particles and a change in the ori-
entation for spin systems. The attempted move is accepted according to
the criterion given in Eq. (15). The random selection of the component
ensures that detailed balance is strictly satisfied at all times. Alternatively,
we may select components sequentially and accept with the same Metrop-
olis criteria. For the case of sequential updates, strict detailed balance is
not satisfied since each move cannot be reversed immediately.

In Ref. [6], we investigated transition kernels based on sequential
updates. Each component n (n =1,2, . . . , k) of the system has a transition
matrix itself, which is denoted as S(n). The transition kernel for a sweep
(k attempted moves) is the product of all sequential updating matrices. If
the updating sequence is the same, the transition kernel of the sweep is

W =
k∏

n=1

S(n) = S(1) · S(2) · · · S(k) . (17)
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Since each single-component trial move is accepted with Metropolis crite-
ria (15), detailed balance is satisfied upon updating a single component,

πi S(n)
i j =π j S(n)

j i , (18)

which, in view of Eq. (12), implies that the balance condition πT · S(n) =
πT is also satisfied on updating a single component. For a sweep, we can
write

πT · W =πT
k∏

n=1

S(n) =πT · S(2) · · · S(k) =· · ·=πT (19)

which implies that the balance condition for every sweep is satisfied. How-
ever, since immediate reversal of a move is not possible within a sweep,
detailed balance is not satisfied for the transition kernel of each sweep, i.e.,

πi Wi j �=π j W ji . (20)

In Ref. [6], we showed that the transition kernel for random updat-
ing, P , can be expressed as an arithmetic mean of the sequential transition
matrices S(n),

P = 1
k

k∑

n=1

S(n) . (21)

The transition kernel that corresponds to a sweep based on purely random
updates is Pk . Using the previous definitions and the arithmetic-geometric
mean properties, it can be seen that [6]

[Pk]i i > Wii . (22)

[Pk]i i are the diagonal elements of the matrix Pk , i.e., the remaining and
revisiting probability of state i after a sweep. For sequential updates, Wii

is the remaining probability in state i after a sweep, since revisiting a con-
figuration is not allowed within the same sweep. Equation (22) shows that
the diagonal elements of the sequential sweep kernel are always smaller
than those of the random sweep kernel. According to a theorem by
Peskun [14], the quality of an estimate can be increased by decreasing the
magnitude of the diagonal elements. A transition kernel with smaller diag-
onal elements is expected to be less “sticky” with respect to the current
state. Thus, ergodic kernels with smaller diagonal elements have enhanced
“mobility” over the sample space and the Markov chain may converge to
equilibrium faster.
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A Markov chain based on purely sequential updates may not always
be ergodic due to periodic effects [5,6]. In Ref. [6], we proposed an algo-
rithm based on sequential updates with partial randomness that annihi-
lates oscillatory behavior. A randomly selected lattice site is bypassed at
regular intervals (i.e., every few sweeps) of sequential updating and hence
the name “random skipping” (RS) sequential Monte Carlo algorithm. The
randomness introduced by the bypassed lattice site is tantamount to ren-
dering the transition kernel irreducible and aperiodic. The efficiency of the
proposed algorithm was investigated in Ref. [6] for the case of the Ising
model on the symmetry (zero-field) axis. In this work, we compare the
algorithm of Ref. [6] with standard grand canonical Monte Carlo algo-
rithms for the fluid analogue of the Ising model, i.e., the lattice gas.

5. METROPOLIS ALGORITHMS FOR THE LATTICE GAS

The well-known Ising model comprises spins residing on the sites j
of a d-dimensional lattice of coordination number q, linear dimension L,
and total number of sites N . The spins can take two values σ j =±1, j =
1,2, . . . , N . For a ferromagnetic system, the interaction energy between a
pair of nearest-neighbor spins, σi and σ j , is −Jσiσ j where J > 0. The
interaction of a spin σi with an external magnetic field B is −Bσi . The
energy and magnetization of a given configuration {σ j } of the N spins are

E =−J
∑

〈i j〉
σiσ j , M =

N∑

j=1

σ j . (23)

The notation 〈i j〉 stands for nearest-neighbor pairs. The partition function
of the Ising model is

Z =
∑

{σ j }
e−βE+hM , (24)

with h =βB.
The lattice gas is defined by considering the lattice points to be cells

of volume υ which may be occupied by at most one molecule [15,16]. The
activity, z, of the molecule is defined as

z = 1
Λd

eβµ (25)

where µ is the chemical potential and Λ is the thermal De Broglie wave-
length. Each cell j is described by the occupation variable n j = 0,1
depending on whether the cell is empty or occupied by a molecule. The
potential energy of interaction between a pair of nearest-neighbor cells i
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and j with occupation numbers ni and n j , respectively, is −ε ni n j with
ε > 0. The potential energy and the number of molecules for a given set
of the occupation variables {n j } of the cells are

U =−ε
∑

〈i j〉
ni n j , n =

N∑

j=1

n j . (26)

The grand partition function of the lattice gas is thus

Ξ =
∑

{n j }
(zυ)ne−βU . (27)

Since n j = (σ j +1)/2, the Ising model and the lattice gas are equivalent if
[15,16]

ε =4J , ln(zυ)=2(h −qβ J ) . (28)

In this paper, we investigate the equivalence of the Ising model to the
lattice gas in order to implement grand canonical types of moves (par-
ticle insertions and removals) with sequential updating. Our objective is
twofold. First, we wish to achieve an enhancement similar to that seen
in Ref. [6] for the Ising model. Second, we wish to compare sequential
grand canonical updating algorithms with the standard grand canonical
algorithms [7–9] that have been widely used for continuum fluid models.

For the Ising model, random updating corresponds to changing the
spin variable (σ j → −σ j ) of a randomly selected lattice site j . The pro-
posed spin flip is accepted according to Eq. (15) and since qi j =q ji ,

αi j =min
{

1, exp
[
h�M −β�E

]}
. (29)

�E and �M =±2 are the changes of energy and magnetization. For the
lattice gas, random updating amounts to changing the occupation variable
n j (0→1 or 1→0) of a randomly selected cell j . The acceptance proba-
bility is given by

αi j =min
{

1, (zυ)�n exp
[
−β�U

]}
(30)

where �U and �n = ±1 are the changes of energy and number of par-
ticles. For an empty cell, �n = +1 and the update corresponds to parti-
cle insertion. For an occupied cell �n =−1 which corresponds to particle
removal. For RS sequential updates, the lattice points are selected sequen-
tially and the proposed moves are accepted with the same acceptance cri-
teria. A randomly selected site (cell) is always bypassed at regular intervals
to ensure ergodicity.
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The grand canonical algorithms of Norman–Filinov and Adams [7–9]
have been extensively used for continuum fluids. During the course of
the simulation, one decides on the type of grand canonical move, particle
insertion or removal, with equal probability. If the proposed move corre-
sponds to particle insertion, a new particle is placed at a uniform random
position within the volume V . For particle removal, a randomly selected
particle is removed. Both attempted moves are accepted with Metropolis
acceptance criteria, Eq. (15). Note that for this case the a priori prob-
abilities qi j and q ji are not equal. We have considered this algorithm—
thereby called conventional—for the two-dimensional lattice gas. Our sole
purpose is to obtain an idea as to the relative merits and the speed of con-
vergence of each algorithm. In our implementation of the Norman and
Filinov algorithm, we consider particle insertions and removals with equal
probability, i.e., 1/2. For the insertion (n →n +1) step we select a cell (any
one) and we thus have

qi j = 1
2

1
N

, q ji = 1
2

1
n +1

. (31)

The acceptance probability is found from Eq. (15);

αi j =min
{

1,
N

n +1
zυ e−β�U

}
. (32)

For the removal (n →n −1) step we select one of the n particles with equal
probability. Thus, we have

qi j = 1
2

1
n

, q ji = 1
2

1
N

(33)

and

αi j =min
{

1,
n

N

1
zυ

e−β�U
}

. (34)

Since the volume of the system is V = Nυ, the acceptance criteria Eqs. (32)
and (34) are identical to those of Refs. [1–3] and [7–9].

6. CONVERGENCE TESTS

We have considered the lattice gas on the square lattice on an iso-
therm that corresponds to a reduced temperature of T ∗ =kBT/ε =0.6. We
consider nearest-neighbor interactions only, thus q = 4. The behavior on
the critical isochore is known analytically [17], due to the equivalence of
this model to the Ising model: see Eq. (28). The critical temperature is [17]

kBTc

ε
= 1

2 ln(1+√
2)

≈0.567 . (35)
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The relative deviation from the critical isotherm is (T − Tc)/Tc ≈ 0.06. If
φ = 〈n〉/N is the fraction of occupied cells (volume fraction), the critical
value of φ is φc =1/2 due to particle-hole symmetry.

First, we obtain the eigenvalues of a 2 × 2 system for all three algo-
rithms (random, RS sequential, and conventional grand canonical) under
investigation. The approach to the stationary limit is determined by the
magnitude of the modulus of the second largest eigenvalue, |λ2|. For the
case of the RS sequential algorithm, we consider a kernel A that corre-
sponds to a random skip for every sweep. Matrix A can be expressed in
terms of the singe component matrices, S(n) as

A = 1
k

k∑

l=1

k∏

n �=l

S(n) . (36)

We also consider kernel P that corresponds to purely random updates, see
Eq. (21), and kernel F that corresponds to the “conventional” algorithm.
Instead of the second largest eigenvalue λ2, we consider a closely related
variable τ2,

τ2 =− 1
δt

1
ln |λ2| , (37)

which has the meaning of relaxation or correlation time [18]. The param-
eter δt sets the scale of time in terms of elementary steps. For the 2 × 2
system, one lattice sweep is defined as k =4 elementary updates. Kernel A
is associated with k − 1 = 3 elementary updates, whereas kernels P and F
both correspond to 1 elementary move. Therefore, if δt =1 for A, then δt =
k −1=3 for P and F for the comparison to be meaningful.

Our results for τ2 in terms of volume fraction φ are shown in Fig. 1.
It can be seen that the curve that corresponds to sequential updating
always lies below that of the random updating and the conventional algo-
rithm. Based on analysis of a 2 × 2 system, one can infer that sequential
updating algorithms exhibit the fastest convergence to equilibrium. Sim-
ilar behavior is observed for different isotherms. We also note that due
to the nature of the updates, the curves that correspond to random and
sequential updates are symmetric about φ = 1/2. The conventional algo-
rithm does not distinguish between empty and occupied cells and thus
does not respect the particle-hole symmetry of the lattice gas. As φ →1/2,
the correlation time τ2 increases for all algorithms. This is to be expected,
since the φ =1/2 symmetry axis corresponds to maximum lattice gas com-
pressibility. More importantly, as T → Tc, the compressibility exhibits a
power law type of divergence. In the vicinity of Tc, the time required to
generate statistically independent samples increases as a power law of the
system size L, i.e., τ ∼ Lω where ω is the dynamic exponent [1].



530 Ren, O’Keeffe, and Orkoulas

20

10

5

0
0 0.2 0.4 0.6 0.8 1

15

2

⁄
Fig. 1. Correlation time τ2 as a function of volume
fraction φ = 〈n〉/N for a 2 × 2 lattice gas model with
q =4 at T ∗ =0.6. The dot-dashed line corresponds to the
“conventional” grand canonical algorithm (see text), the
dotted line corresponds to random updates, and the solid
line corresponds to sequential updates with a random
skip in every sweep.

We have also performed Monte Carlo simulations for a 100×100 lat-
tice gas on the T ∗ = kBT/ε = 0.6 isotherm. In Fig. 2, we plot the volume
fraction φ =〈n〉/N and the energy density u =〈U 〉/N vs. the reduced activ-
ity z∗ = zυ, for all three algorithms. For the case of sequential updates, we
implemented a random skip in every other sweep. The efficiency of simu-
lation algorithms can be inferred from measurements of equilibrium auto-
correlation (or time-displaced) functions [1]. The autocorrelation function
ΦX (t) of a fluctuating variable X (such as energy, density or magnetiza-
tion) is defined as

ΦX (t)=
〈
X (0)X (t)

〉− 〈
X (0)

〉2
〈
X (0)X (0)

〉− 〈
X (0)

〉2 , (38)

and it drops from ΦX (0) = 1 to zero as t → ∞. The time scale, τ , char-
acterizing the decay of ΦX (t) at large times is the correlation or linear-
relaxation time [1]. The behavior of the density autocorrelation function,
Φn(t), is shown in Figs. 3 and 4. Figure 3 corresponds to a dilute system
(φ ≈0.1) whereas Fig. 4 to an almost filled lattice (φ ≈0.9). It can be seen
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Fig. 2. Simulation results for the two-dimensional 100 ×
100 lattice gas with q = 4 neighbors at T ∗ = kBT/ε = 0.6.
Volume fraction φ = 〈n〉/N (left) and energy density u =
〈U 〉/N (right) vs. reduced activity z∗ = zυ. (+): sequen-
tial updates; (◦): random updates; (•): conventional algo-
rithm. Dotted lines are drawn for visual clarity.

that Φn(t) of the RS sequential algorithm exhibits the fastest decay, which
implies that sequential updating yields samples of the highest quality. Sim-
ilar behavior is also observed for other autocorrelation functions such as
energy, ΦU (t).

We have estimated the integrated relaxation time τ , defined as [1]

τ =
∫ ∞

0
dt ΦX (t) , (39)

from the density autocorrelation function Φn(t) for all the simulated state
points shown in Fig. 2. Our results for the relaxation time, τ , in lattice
sweeps, vs. volume fraction, φ, on the isotherm T ∗ = 0.6 are shown in
Fig. 5. Despite the fact that the time-scales are different, the similarity of
Fig. 5 with Fig. 1 is evident. Once again, the sequential updating algo-
rithm is seen to produce samples of the highest statistical quality. Our
analysis of small and large systems confirms the enhancement obtained by
using sequential updating algorithms. Thus, we conclude that the so-called
“neighbor” effect seen in Ref. [6] for the Ising model also persists in the
lattice gas. We anticipate that an analogous behavior similar to that of the
lattice gas shown in Fig. 5 should also be seen for continuum fluids.
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Fig. 3. Density autocorrelation function, Φn(t), for a
100×100 lattice gas model with q =4 neighbors at T ∗ =
kBT/ε = 0.6 and z∗ = zυ = 0.031. Time t is measured in
lattice sweeps. For the case of the sequential algorithm, a
random skip is implemented every other sweep.

Fig. 4. Density autocorrelation function, Φn(t), for
a 100 × 100 lattice gas model with q = 4 neighbors at
T ∗ = kBT/ε = 0.6 and z∗ = zυ = 0.04. Time t is measured
in lattice sweeps. For the case of the sequential algorithm,
a random skip is implemented every other sweep.
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Fig. 5. Integrated autocorrelation time τ (lattice sweeps)
as a function of volume fraction φ = 〈n〉/N for the two-
dimensional 100 × 100 lattice gas with q = 4 neighbors at
T ∗ =0.6. (•): RS sequetial updating ; (◦): random updat-
ing; (�): conventional algorithm.

7. DISCUSSION AND CONCLUSIONS

Monte Carlo simulations suffer from convergence problems in many
situations. The most notable example is the problem of critical slowing
down [1] that occurs in the vicinity of the critical point, T ≈ Tc. Monte
Carlo algorithms will be more efficient if they have better mobility over
the sample space. Although the Metropolis acceptance probability Eq.
(15) is thought to be optimal, considerable freedom still exists in devising
better transition kernels with the same acceptance criteria. In this direc-
tion, this work and the previous work of Ref. [6] shows that relaxation
of the unnecessarily strong constraint of strict detailed balance results in
enhanced statistical efficiency.

The improvement of sequential updating algorithms is due to an ava-
lanche or cascade type of phenomenon caused by the so-called “neigh-
bor effect.” For the lattice gas, successful insertion or removal triggers a
higher probability of insertion or removal in a neighboring cell as the pre-
vious cell. While the “neighbor effect” persists in sequential updating, it
rarely occurs in random updating algorithms due to the random selection
of the cell. The “neighbor effect” exists not only for lattice systems, but
also for continuum fluid models such as Lennard-Jones. The next step in
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the direction of sequential updating algorithms involves grand canonical
simulations for continuum fluids.

The main advantages of algorithms based on sequential updates
are their implicity, efficiency, and feasibility of parallel implementation.
Metropolis himself [19] anticipated that Monte Carlo simulations can be
implemented with massively parallel machines. However, strict detailed
balance is a big obstacle in achieving this goal since it requires that
every elementary update be reversed before all other moves are attempted.
In parallel simulations based on domain decomposition, once a par-
ticle escapes out of a subdomain, processors need to exchange infor-
mation immediately. However, frequent information exchange in parallel
simulations reduces the efficiency dramatically. The efficiency may be even
worse than serial implementation due to slow but frequent synchronization
between processors. Due to the nature of the updates and the absence of
strict detailed balance, sequential algorithms can be readily put in parallel
format. The efficiency of parallel implementation of sequential algorithms
is in addition to the improvement of serial implementation without loss of
precision.
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